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1. Project Synopsis 
This is the final report for the "High-Speed / High-Temperature Lasers for Avionic 

Interconnects Project, Project Number 2300AA15. The objective of this research project was to 
provide the best possible modulation bandwidths for laser diodes under high (100° C) operating 
temperatures. An in-house iterative approach was used throughout the design, growth, 
fabrication, and testing cycle to discover and demonstrate the best-performing laser design. The 
project succeeded in designing and developing diode lasers operating CW at 150° C with a 
small-signal modulation frequency ~5 GHz. This research resulted in one conference 
presentation at the 2001 Solid-State and Diode Laser Technology Review in Albuquerque, NM 
as well as the motivation for two masters theses at the University of Dayton. 

2. Introduction 
High-speed semiconductor lasers operating at high temperatures are desired for future 

aircraft avionics systems to reduce weight, increase data rates, and eliminate undesired 
electromagnetic emissions. Strained InGaAs quantum well lasers have demonstrated excellent 
temperature performance1 and frequency response.2 These lasers show excellent promise for 
local area network (LAN) applications where fiber dispersion and attenuation considerations are 
not as critical. To determine what trade-offs exist between high-temperature and high-speed 
performance Ino.20Gao.80As quantum-well lasers with one through four quantum wells were 
fabricated and tested to determine the optimum number of quantum wells to provide the highest 
frequency response at temperatures up to 150° C. This presentation reports on the design and 
development of high-frequency Ino.2Gao.8As single and four quantum well lasers for operation at 
high temperatures. The multiple-quantum well laser devices all performed better than the single 
quantum well laser device for both pulsed and continuous-wave (CW) high-temperature 
operation as well as temperature dependent high-frequency operation with the four quantum well 
laser performing the best.   The four quantum well laser demonstrated a room temperature -3 dB 
frequency response -13 GHz and -3 dB frequency response at 150° C ~5 GHz. This result is the 
highest temperature for high-frequency operation reported to date.3 

3. Device Design, Growth, and Fabrication 
The high-frequency laser structure was designed to operate with a single transverse mode 

as well as a single lateral mode. The epitaxial layer design ensured the single transverse mode 



while the fabrication of a ridge waveguide laser structure ensured single lateral mode operation 
for the high-speed laser devices. The laser material was fabricated into gain-guided lasers for 
laser material characterization and ridge-waveguide lasers for net modal gain and high-frequency 
analysis. 

The lasers were grown by molecular beam epitaxy on a semi-insulating, 2° off-axis (from 
the <100> to the <110> crystal plane) GaAs substrate. The epitaxial layer structure beginning 
at the substrate consisted of a 1,000 Ä Si-doped (4(10* ) cm"3) GaAs buffer layer followed by a 
10,000 Ä Si-doped (4(1018) cm"3) Alo.60Gao.40As optical confinement barrier. The active region 
consisted of 2,000 Ä or 1,775 Ä Alo.20Gao.80As spacing layer (single quantum well or four 
quantum well, respectively), a 100 A GaAs electrical confinement barrier followed by either one 
or four periods of 80 Ä Ino.20Gao.80As quantum well(s) and 100 Ä GaAs electrical confinement 
barrier(s), and, finally, a 2,000 Ä or a 1,775 Ä Alo.20Gao.80As spacing layer. The top cladding 
layers consisted of a 10,000 A Be-doped (~1018 cm"3) Alo.60Gao.40As optical confinement barrier, 
and a 500 A heavily Be-doped (-101  cm") GaAs cap layer. 

Gain-guided lasers with widths of 20, 40, 60, 80, and 100 urn were fabricated for laser 
material characterization. The p-ohmic metal of Ti:Pt:Au was evaporated and annealed and then 
the p+ cap was etched back. The substrate was lapped to a thickness of ~85 urn and an n-ohmic 
of Ni:Ge:Au:Ni:Au was evaporated and annealed. The laser bars were cleaved to cavity lengths 
from 200 urn to 800 urn and soldered onto gold plated copper submounts with a Au-Sn eutectic 
solder with a melting point of 280° C. 

Single-mode ridge-waveguide high-speed lasers (shown in Figure 1) with 1, 2, 3, 4, and 5 
urn wide stripes were then fabricated.4 The p-ohmic metal was evaporated and annealed. The 40 
urn wide trench was isotropically etched through the quantum well into the n-doped buffer layer 
and the n-ohmic contact metal was evaporated and annealed. The most critical step was to dry 
etch the 5 urn wide, 10,500 Ä to 12,500 A trench about each side of the p-ohmic metal laser 
stripes. This trench provided current confinement and optical confinement in the lateral 
direction. The structure was insulated with 2,500 Ä of Si3N4, and gold plated testing pads were 
fabricated for use with high-speed cascade probes. The wafer was lapped to ~85 urn and metal 
was evaporated onto the backside of the wafer. The sample was cleaved into 200, 250, and 300 
um cavity length laser bars and mounted onto gold plated copper submounts with a Au-Sn 
eutectic solder. 

a) b) 
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Figure 1: a) Schematic illustrating the layer structure and device structure for the ridge-waveguide 
laser, b) SEM micrograph of a 5 urn laser device with the gold plated cascade probable ground- 
signal-ground contact pads soldered onto a gold-plated copper submount. 



4.   Laser and Small-Signal Characterization 

Temperature-dependent pulsed (pulse width = 5 us & pulse interval =100 us) light- 
output power versus injected current (L-I) characterization was performed on -400 urn long 
single-quantum well devices, as shown in Figure 2a, and four-quantum well devices, shown in 
Figure 2b. For the single quantum well device with dimensions of 20 jam by 385 urn room 
temperature threshold was -50 mA with laser operation up to 140° C with a threshold current of 
~240 mA. For the four quantum well device with similar dimensions of 20 urn by 380 urn room 
temperature threshold was -35 mA and laser operation up to 240° C was measured with a 
threshold current of-360 mA. 

Length = 380 um 
Width = 20 urn 

Current (mA) 

Figure 2: Temperature dependent pulsed (pulse width = 5 us and pulse interval = 100 us) light output 
power versus injected current for a) single quantum well laser device and b) four quantum well laser device. 

The 2 urn wide by -250 urn long ridge-waveguide lasers operated in CW current mode 
up to temperatures of 90° C for single quantum well devices and up to 150° C for multiple 
quantum well devices5, as shown in Figures 3a and 3b, respectively. The single quantum well 
lasers exhibited a -3 dB frequency response -7 GHz for room-temperature operation and >3 GHz 
at 90° C, as shown in Figure 4a. The four quantum well laser device had a -3 dB frequency 
response of-14 GHz for room-temperature operation and -5 GHz at 150° C, as shown in Figure 
4b. 
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Figure 3: Temperature dependent CW light output power versus injected current for laser devices with 
dimensions on the order of 2 um by 250 um with a) single quantum well and b) four quantum well. 
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Figure 4: Temperature dependent frequency response for 2 um by 250 urn laser device with a) single 
quantum well and b) four quantum well. 

5.   Conclusions 
InGaAs quantum well devices offer excellent transmitter capability for local area 

networks required to operate in extreme temperature environments. High-frequency high- 
temperature InGaAs quantum well lasers have been demonstrated to operate up to temperatures 
of 150° C. The four quantum well devices performed significantly better than the single 
quantum well devices in both high-temperature operation as well as high-frequency operation. 
Increased capability can be achieved by increasing the indium content of the quantum wells, 
facet coating, and mounting the devices epi-side down for improved heat dissipation in the 
junction. Future directions include developing devices more compatible with the 
telecommunication wavelengths of 1.3 um and 1.55 urn. Dilute nitride quantum wells have 
shown promise to achieve GaAs-based 1.3 urn laser operation. Another area to improve the 
efficiency of the devices would be to introduce tunnel junctions into the devices in-between 
separate multiple active regions. This monolithically connects a number of lasers in series 
thereby increasing the output power while keeping the threshold current relatively the same as 
for one active region device. 
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